677 research outputs found

    Age-related human small intestine methylation: evidence for stem cell niches

    Get PDF
    BACKGROUND: The small intestine is constructed of many crypts and villi, and mouse studies suggest that each crypt contains multiple stem cells. Very little is known about human small intestines because mouse fate mapping strategies are impractical in humans. However, it is theoretically possible that stem cell histories are inherently written within their genomes. Genomes appear to record histories (as exemplified by use of molecular clocks), and therefore it may be possible to reconstruct somatic cell dynamics from somatic cell errors. Recent human colon studies suggest that random somatic epigenetic errors record stem cell histories (ancestry and total numbers of divisions). Potentially age-related methylation also occurs in human small intestines, which would allow characterization of their stem cells and comparisons with the colon. METHODS: Methylation patterns in individual crypts from 13 small intestines (17 to 78 years old) were measured by bisulfite sequencing. The methylation patterns were analyzed by a quantitative model to distinguish between immortal or niche stem cell lineages. RESULTS: Age-related methylation was observed in the human small intestines. Crypt methylation patterns were more consistent with stem cell niches than immortal stem cell lineages. Human large and small intestine crypt niches appeared to have similar stem cell dynamics, but relatively less methylation accumulated with age in the small intestines. There were no apparent stem cell differences between the duodenum and ileum, and stem cell survival did not appear to decline with aging. CONCLUSION: Crypt niches containing multiple stem cells appear to maintain human small intestines. Crypt niches appear similar in the colon and small intestine, and the small intestinal stem cell mitotic rate is the same as or perhaps slower than that of the colon. Although further studies are needed, age-related methylation appears to record somatic cell histories, and a somatic epigenetic molecular clock strategy may potentially be applied to other human tissues to reconstruct otherwise occult stem cell histories

    Regulation of human mammary stem cells

    Get PDF

    Chasing the immortal strand: evidence for nature's way of protecting the breast genome

    Get PDF
    Mutations arise during cell division at a predictable rate. Besides DNA repair mechanisms, the existence of cellular hierarchies that originate with a stem cell serve to reduce the number of divisions necessary for normal physiology. In a previous issue, Bussard and colleagues demonstrate that mammary stem cells have an additional remarkable trait; namely the ability to selectively retain a template DNA strand during self renewal. In doing so, they avoid the accumulation of mutations in that so called 'immortal strand'. The implications of this are discussed with reference to the development and treatment of cancer

    Estrogen receptor-α and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands

    Get PDF
    INTRODUCTION: Stem cells of somatic tissues are hypothesized to protect themselves from mutation and cancer risk through a process of selective segregation of their template DNA strands during asymmetric division. Mouse mammary epithelium contains label-retaining epithelial cells that divide asymmetrically and retain their template DNA. METHOD: Immunohistochemistry was used in murine mammary glands that had been labeled with [(3)H]thymidine during allometric growth to investigate the co-expression of DNA label retention and estrogen receptor (ER)-α or progesterone receptor (PR). Using the same methods, we investigated the co-localization of [(3)H]thymidine and ER-α or PR in mammary tissue from mice that had received treatment with estrogen, progesterone, and prolactin subsequent to a long chase period to identify label-retaining cells. RESULTS: Label-retaining epithelial cells (LRECs) comprised approximately 2.0% of the entire mammary epithelium. ER-α-positive and PR-positive cells represented about 30–40% of the LREC subpopulation. Administration of estrogen, progesterone, and prolactin altered the percentage of LRECs expressing ER-α. CONCLUSION: The results presented here support the premise that there is a subpopulation of LRECs in the murine mammary gland that is positive for ER-α and/or PR. This suggests that certain mammary LRECs (potentially stem cells) remain stably positive for these receptors, raising the possibility that LRECs comprise a hierarchy of asymmetrically cycling mammary stem/progenitor cells that are distinguished by the presence or absence of nuclear steroid receptor expression

    Deconstructing stemness

    Full text link

    Telomeres and disease

    Get PDF
    The telomeres of most eukaryotes are characterized by guanine-rich repeats synthesized by the reverse transcriptase telomerase. Complete loss of telomerase is tolerated for several generations in most species, but modestly reduced telomerase levels in human beings are implicated in bone marrow failure, pulmonary fibrosis and a spectrum of other diseases including cancer. Differences in telomerase deficiency phenotypes between species most likely reflect a tumour suppressor function of telomeres in long-lived mammals that does not exist as such in short-lived organisms. Another puzzle provided by current observations is that family members with the same genetic defect, haplo-insufficiency for one of the telomerase genes, can present with widely different diseases. Here, the crucial role of telomeres and telomerase in human (stem cell) biology is discussed from a Darwinian perspective. It is proposed that the variable phenotype and penetrance of heritable human telomerase deficiencies result from additional environmental, genetic and stochastic factors or combinations thereof

    The early life microbiota protects neonatal mice from pathological small intestinal epithelial cell shedding

    Get PDF
    The early life gut microbiota plays a crucial role in regulating and maintaining the intestinal barrier, with disturbances in these communities linked to dysregulated renewal and replenishment of intestinal epithelial cells. Here we sought to determine pathological cell shedding outcomes throughout the postnatal developmental period, and which host and microbial factors mediate these responses. Surprisingly, neonatal mice (Day 14 and 21) were highly refractory to induction of cell shedding after intraperitoneal administration of liposaccharide (LPS), with Day 29 mice showing strong pathological responses, more similar to those observed in adult mice. These differential responses were not linked to defects in the cellular mechanisms and pathways known to regulate cell shedding responses. When we profiled microbiota and metabolites, we observed significant alterations. Neonatal mice had high relative abundances of Streptococcus, Escherichia, and Enterococcus and increased primary bile acids. In contrast, older mice were dominated by Candidatus Arthromitus, Alistipes, and Lachnoclostridium, and had increased concentrations of SCFAs and methyamines. Antibiotic treatment of neonates restored LPS-induced small intestinal cell shedding, whereas adult fecal microbiota transplant alone had no effect. Our findings further support the importance of the early life window for microbiota-epithelial interactions in the presence of inflammatory stimuli and highlights areas for further investigation
    corecore